
1942 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 25, NO. 10, OCTOBER 2014

Multilinear Sparse Principal Component Analysis
Zhihui Lai, Yong Xu, Qingcai Chen, Jian Yang, Member, IEEE, and David Zhang, Fellow, IEEE

Abstract— In this brief, multilinear sparse principal component analy-
sis (MSPCA) is proposed for feature extraction from the tensor data.
MSPCA can be viewed as a further extension of the classical princi-
pal component analysis (PCA), sparse PCA (SPCA) and the recently
proposed multilinear PCA (MPCA). The key operation of MSPCA is
to rewrite the MPCA into multilinear regression forms and relax it for
sparse regression. Differing from the recently proposed MPCA, MSPCA
inherits the sparsity from the SPCA and iteratively learns a series of
sparse projections that capture most of the variation of the tensor data.
Each nonzero element in the sparse projections is selected from the most
important variables/factors using the elastic net. Extensive experiments
on Yale, Face Recognition Technology face databases, and COIL-20
object database encoded the object images as second-order tensors, and
Weizmann action database as third-order tensors demonstrate that the
proposed MSPCA algorithm has the potential to outperform the existing
PCA-based subspace learning algorithms.

Index Terms— Dimensionality reduction, face recognition,
feature extraction, principal component analysis (PCA), sparse
projections.

I. INTRODUCTION

Principal component analysis (PCA) is one of the most widely
used data preprocessing and feature extraction methods in the
fields of computer vision and pattern recognition. As the classi-
cal unsupervised linear dimensionality reduction technique, PCA
aims to obtain the most compact representations of the high-
dimensional data under the sense of least square reconstruction error.
Sirovich and Kirby [1], [2] used PCA to represent human faces for
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the first time. Therefore, Turk and Pentland [3] proposed a famous
PCA-based face recognition method called eigenfaces.

To overcome the small sample size problem in PCA, Yang et al. [4]
proposed the well-known 2-D PCA (2-DPCA) for directly per-
forming feature extraction from the image matrices. Based on the
same idea of 2-DPCA, many 2-D-based feature extraction meth-
ods [5]–[11] have been proposed for dimensionality reduction.
Among these methods, generalized low rand approximations of
matrices [7], which can be viewed as the special form of the
concurrent subspaces analysis (CSA) [11], is the most representa-
tive method for 2-D image feature extraction. Recently, there is a
great interest in higher order tensor analysis for feature extraction
and recognition, and higher order tensor decomposition [12]–[14]
has become popular in computer vision and pattern recognition
[15]–[18]. More recently, multilinear PCA (MPCA) [19] and its
uncorrelated variation [20] were also proposed for feature extraction
on tensor objects. Zhao et al. [21] presented a framework that
brings kernel methods and tensor decomposition techniques together
such that nonlinear kernel-based strategy can be applied to tensor
decompositions.

The PCA-based methods mentioned above all use L2 norm as
the measurement. However, recent research shows that introducing
the L1 norm for sparse feature selection not only can enhance the
prediction accuracy, but also strengthen the generalization ability
and the robustness for classification [22]–[25]. In [22], Tibshirani
proposed the least absolute shrinkage and selection operator (LASSO)
using the L1 norm penalty for feature selection and obtained better
performance than the ordinary least squares regression. The elastic
net [24] generalizes the LASSO by combining both the ridge and
lasso penalties and obtains better prediction accuracy. Using the
elastic net in the regression-type optimization problem derived from
PCA, sparse PCA (SPCA) [26] was proposed to compute the sparse
principal component vectors for feature extraction and factor analysis.

However, SPCA can only deal with data expressed in the form of
1-D vector, and there exists much data such as image objects and
action video that are intrinsically in the form of second or higher
order tensors. Therefore, on the one hand, it is necessary to extend
vector-based SPCA to second or higher order tensors so as to process
any-order tensor data for dimensionality reduction using the most
important variables/factors. On the other hand, when it is extended
into second or higher order tensors, the efficiency and effectiveness
of SPCA can be greatly improved since the extended method can
directly operate on the tensor data. To these ends, the focus of this
brief is on unsupervised subspace learning of the tensor data with
sparseness constraint, i.e., SPCA on tensor analysis.

In this brief, multilinear SPCA (MSPCA) is proposed based on the
following experimental/experiential observations. First, recent studies
[4]–[7], [20], [27], [28] have shown that when the 1-D-based methods
were extended to high-order tensors, the corresponding extension
methods usually outperform the original ones, particularly in the cases
of small sample sizes. Second, introducing the L1 norm for sparse
feature selection can enhance the prediction accuracy and strengthen
the generalization ability and the robustness for classification
[22]–[24], [25]. Thus, extending the PCA into higher order tensor
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form and, simultaneously, introducing the L1 norm for sparse feature
selection is appreciated and may further improve the algorithm’s
(i.e., MSPCA) performance. Differing from all the multilinear learn-
ing methods mentioned above, our multilinear learning method is
subjected to the sparseness constraint imposed by the L1 norm.
MSPCA performs sparse dimensionality reduction in all tensor modes
and captures most of the variation of the original tensors instead of
the vectors.

The main contributions of this brief are as follows. MPCA is
first rewritten into multilinear regression forms according to the
optimization technique of mode-k flattening of the nth-order tensor.
Then, the multilinear regression models are relaxed to an equiva-
lent optimization problem for sparse principal component learning
using the L1 and L2 norms penalty. Thus, an efficient multilinear
sparse principal learning method called MSPCA is proposed for
feature extraction. The optimal multilinear sparse principal compo-
nent vectors are obtained from an iterative algorithm using elastic
net regression and singular value decomposition (SVD) on tensor
data instead of vectors. Thus, MSPCA is significantly different from
the existing multilinear learning methods (such as MPCA and those
in [11]–[18] etc.), which use eigen decomposition to compute the
optimal multilinear projections.

The rest of this brief is organized as follows. In Section II, MPCA
and SPCA are reviewed. In Section III, MSPCA algorithm and
related analyses are described. Experiments are carried out to evaluate
MSPCA algorithm in Section IV, and the conclusion is given in
Section V.

II. BRIEF REVIEW OF SPCA AND MPCA

In this section, we give some basic multilinear notations, definitions
and operations at first and then briefly review SPCA and MSPCA.

A. Tensor Fundamentals and its Notations

In this brief, if there is no specification, lowercase italic letters,
i.e., α, β, k, i, j , denote scalars, bold lowercase letter, i.e., u, v, denote
vectors, uppercased letters, i.e., U, V, B, X , denote matrices and bold
uppercase letters X, Y denote the tensors.

Assume that the training samples are represented as the nth-order
tensor {Xi ∈ Rm1×m2×···×mn , i = 1, 2, . . . , N}, where N denotes the
total number of the training samples. We need the following notations
and definitions similar to [12]–[14], [19], [27].

Definition 1: The mode-k flattening of the nth-order tensor
X ∈ Rm1×m2×···×mn into a matrix Xk ∈ Rmk×∏

i �=k mi , i.e.,
Xk ⇐k X, is defined as Xk

ik , j = Xi1,i2,...,in , j = 1 +
∑n

l=1,l �=k (il − 1)
∏n

o=l+1,o �=k mo, where i1, i2, . . . , in denote the
indices of the nth-order tensor X in different modes.

For the intuitive representation of the mode-k flattening of the nth-
order tensor, the readers are referred to the figures in [19].

Definition 2: The mode-k product of tensor X with matrix U ∈
Rm′

k×mk is defined as Y = X ×k U , where Yi1,...,ik−1,i,ik+1 ,...,in =
∑mk

j=1 Xi1,...,ik−1, j,ik+1,...,in Ui, j ( j = 1, . . . , m′
k).

Without loss of generality, we assume that the training tensor
samples are centered and still denoted as {Xi ∈ Rm1×m2×···×mn , i =
1, 2, . . . , N}. With the above preparations, we begin to review the
related algorithms.

B. Sparse PCA

It is well known that PCA can be formulated as a ridge regression
optimization problem. Thus, the sparse projections of SPCA can be
obtained by imposing the lasso constraint on the regression problem.

That is, SPCA considers the following elastic net regularization
problem:

(Q̂, P̂)=arg min
∑

i

∥
∥xi − Q PT xi

∥
∥2+α ‖P‖2

F +
∑d1

j
β j

∣
∣p j

1

∣
∣

(1)

s.t. QT Q = Id

where xi is the high-dimensional vector concatenated by the
columns/rows of tensor Xi , and Q and P are the d × (m1 × m2 ×
· · ·×mn) matrices, and α, β j ≥ 0 is used for penalizing the loadings
of different principal component vectors.

The problem defined in (1) can be solved by an alternative
minimization algorithm to compute the optimal Q̂ and P̂ . Then, the
sparse principal component vectors are p̂i/

∥
∥ p̂i

∥
∥ , (i = 1, 2, . . . , d),

which can be used for feature extraction.

C. Multilinear PCA

The purpose of the MPCA is to obtain a set of multilin-
ear transformations (or projections) Vi ∈ Rmi ×di (di ≤ mi ,
i = 1, 2, . . . , n) that map the original high-order tensor data into
a low-order tensor space

Yi = Xi ×1 V T
1 ×2 V T

2 · · · ×n V T
n . (2)

The objective function of the MPCA is to directly
maximize the total scatter matrix on the subspace Vi ∈ Rmi ×di

(i �= k) [19]

max
V T

k Vk=Ik

tr
(
V T

k Sk
T Vk

) = max
V T

k Vk=Ik

tr
[
V T

k
(∑N

i
Xk

i XkT
i

)
Vk

]
(3)

where Sk
T = ∑N

i Xk
i XkT

i and Xk
i be the mode-k flattening matrix

of Xk
i ⇐ Xi ×1 V T

1 × · · · ×k−1 V T
k−1 ×k+1 V T

k+1 × · · · ×n V T
n . The

optimal projections of MPCA can be obtained from the SVD or eigen
decomposition

Sk
T Vk = Vk Dk (4)

where Vk = [v1
k , v2

k , . . . , vdk
k ] is the eigenvector matrix and Dk =

diag(λ1
k , λ2

k , . . . , λ
dk
k ) is the eigenvalue matrix of Sk

T , where λ1
k ≥

λ1
k ≥ . . . ≥ λ

dk
k and λ

j
k is the eigenvalue corresponding to the eigen-

vector v j
k . The optimal projection matrix for mode-k is composed of

the eigenvectors corresponding to the first dk largest eigenvalues. That
is, Vk = [v1

k , v2
k , . . . , vdk

k ] is the projection matrix of MPCA for each
mode.

III. MULTILINEAR SPCA

In this section, the multilinear regression for MPCA is presented at
first. Then, it is modified for multilinear sparse principal component
learning.

A. Multilinear Ridge Regression for MPCA

It is known that PCA can be represented in the regression form.
Similarly, we extend the single linear regression into multilinear
regression, which aims to minimize the tensor reconstruction error
with the L2 norm penalty. Let Bi ∈ Rmi ×di (i = 1, 2, . . . , N) and

J (B1, B2, . . . , Bn)

=
∑

i

∥
∥Xi − Xi ×1 B1 BT

1 ×2 B2 BT
2 . . . ×n Bn BT

n
∥
∥2

F

+
∑

j
α j

∥
∥B j

∥
∥2

F . (5)
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Then, the multilinear ridge regression optimization problem of MPCA
can be stated as follows:

min
B1,B2,...,Bn

J (B1, B2, . . . , Bn) (6)

s. t. BT
1 B1 = I1 , . . . , BT

n Bn = In .

To the best of our knowledge, there exists no closed-form solu-
tion for such complex objective function. Fortunately, the opti-
mization problem can be converted into a problem to indepen-
dently determine n subspaces Bns that minimize the construc-
tion errors of the mode-k flattening of the nth-order tensors
using an iterative algorithm similar to MPCA. Therefore, in the
following sections, we only focus on the mode-k flattening of
the nth-order tensors. Suppose B1, B2, . . . , Bk−1, Bk+1, . . . , Bn are
known, from Theorem 1 in [11] the minimization problem in (6)
converts to the following optimization problem with the single
constraint:

min
Bk

∑

i

∥
∥
∥Xk

i − Bk BT
k Xk

i

∥
∥
∥

2

F
+ αk ‖Bk‖2

F (7)

s.t. BT
k Bk = Ik .

From (7), we have

min
Bk

∑

i

∥
∥Xk

i − Bk BT
k Xk

i

∥
∥2

F + αk
∥
∥Bk

∥
∥2

F

= min
Bk

2tr(Sk
T ) − tr

[
BT

k (Sk
T + αk Ik )Bk

]
. (8)

Minimizing (8) is equivalent to

max
BT

k Bk=Ik

tr
[
BT

k (Sk
T + αk Ik )Bk

]
. (9)

Since αk Ik does not affect the eigenvectors, (4) and (9) have the
same solutions, that is Vk is the optimal solution for (9). Therefore,
the eigenvectors of MPCA can be derived from multilinear regression.

B. Model Relaxation for MSPCA

Since the multilinear feature extraction methods focus on the
optimization problem of the mode-k flattening of the nth-order

tensors, in what follows, we pay attention to the multilinear regression
problem (7). Let Uk ∈ Rmk×dk , to obtain the sparse regression
model for sparse principal component vectors, we relax (7) to a new
regression problem

min
Uk ,Bk

∑

i

∥
∥Xk

i − BkU T
k Xk

i

∥
∥2

F + αk ‖Uk‖2
F (10)

s. t. BT
k Bk = Ik .

The following theorem reveals the close relationship between (7) [or
(6)] and (10).

Theorem 1: For any given αk > 0, the optimization prob-
lems in (7) and (10) have the same solution for variable
Bk . Let (B̂k, Ûk) be the optimal solutions of (10), where
Ûk = [u1

k , u2
k , . . . , udk

k ], then u j
k ∝ v j

k (1 ≤ j ≤ dk ).
Proof: The proof is shown in the Supplementary Appendix.
Theorem 1 reveals the close relationship between the multilinear

regression problem and the objective function of MPCA for any given
mode k. Since the optimal solutions of (6) are given by (7) and
(10) also has the same solution as (6). This relaxation provides us a
tractable method for using the L1 norm penalty to compute the sparse
vectors. Therefore, to obtain the multilinear sparse principal vectors,
the lasso penalty is imposed on the regression representation of
mode-k flattening of the MPCA regression criterion. Finally, MSPCA
criterion is defined as follows:

min
Bk,Uk

∑

i

∥
∥Xk

i −BkU T
k Xk

i

∥
∥2

F+ αk ‖Uk‖2
F +

∑dk

j
βk, j

∣
∣u j

k

∣
∣(∀k)

(11)

s.t. BT
k Bk = Ik

where βk, j ≥ 0 is used for penalizing the loadings of different
principal component vectors. Obviously, if all of the βk, j s are equal
to zero, we have the exact MPCA solutions. In MSPCA algorithm,
we usually suppose βk, j > 0, which results in the multilinear sparse
principal vectors.
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C. Solutions of MSPCA

This section presents how to compute the sparse solutions of
MSPCA. According to (11), we have

∑

i

∥
∥Xk

i − BkU T
k Xk

i ‖2
F + α ‖Uk‖2

F +
∑dk

j
βk, j

∣
∣u j

k

∣
∣

= tr

( ∑

i
Xk

i XkT

i

)

+
∑

j

(

u j T
k

[( ∑

i
Xk

i XkT

i

)

+ α

]

u j
k

−2b j T
k

( ∑

i
Xk

i XkT

i

)

u j
k + βk, j

∣
∣u j

k

∣
∣
)

= tr(Sk
T ) +

∑

j

(
ujT

k (Sk
T + α)u j

k − 2b j T
k Sk

T u j
k + βk, j

∣
∣u j

k

∣
∣
)
.

(12)

It can be observed that if Bk is given then the optimal sparse solutions
of (12) are exactly those of the following m′

k independent naive elastic
net problems:

u j T
k (Sk

T + α)u j
k − 2b j T

k Sk
T u j

k + βk, j
∣
∣u j

k

∣
∣ j = 1, . . . , m′

k . (13)

On the other hand, we also have
∑

i

∥
∥Xk

i − BkU T
k Xk

i

∥
∥2

F + α ‖Uk‖2
F +

∑dk

j
βk, j

∣
∣u j

k

∣
∣

= tr

( ∑

i
Xk

i XkT

i

)

− 2tr

[

BT
k

( ∑

i
Xk

i XkT

i

)

Uk

]

+ tr

[

U T
k

(∑

i
Xk

i XkT

i + α Ik

)

Uk

]

+
∑

i
βk, j

∣
∣u j

k

∣
∣ (14)

when Uk is known and fixed, the 1-, 3-, and 4-th terms of (14) are
constants and thus can be ignored. Finally, the problem of minimizing
(14) becomes the following maximization problem:

max tr

[

BT
k

( ∑

i
Xk

i XkT

i

)

Uk

]

(15)

s. t. BT
k Bk = Ik .

According to Theorem 4 in [26], the optimal solution of the above
maximum problem for the given Uk is

B∗
k = Ū V̄ T (16)

where Ūand V̄ are the SVD decomposition of (
∑

i Xk
i XkT

i )Uk , i.e.,

(
∑

i Xk
i XkT

i )Uk = Ū D̄V̄ . The details of MSPCA algorithm are given
in Supplementary Appendix.

D. Computational Complexity and Convergence of MSPCA

1) Computational Complexity: For simplicity, we assume that
m1 = m2 = · · · = mn = m and the total number of training
samples N is comparable in magnitude with the feature dimension
mn . The complexity of PCA is O(m3n). The complexity of SPCA is
O(T m3n +Nm2n ), where T is the number of iterations in elastic net.
The total complexity of MPCA (or CSA) is t O((n + 1)Nnmn+1 +
nm3), where t denotes the number of iterations. The complexity of
MSPCA is t O(n2 Nmn+1 + nNmn+1 + nT m3) at most. Although
many loops are required for MSPCA in its optimization, MSPCA is
still more efficient than PCA and SPCA owing to the facts: 1) the
inner loops of elastic net are convergent very fast since it operates
on the very low-dimensional vectors (or small size matrices) and 2)
as shown in Fig. 1 (e) and (f), the outer loops are also convergent
within several iterations. Obviously, the complexity of MSPCA will
be slightly bigger than that of MPCA even with the same t . However,
computing the sparse principal component vectors is only needed in
the training phase in pattern recognition tasks, therefore it can be
done offline and the additional computational cost is not considered
a distinct disadvantage of the proposed method in this case.

2) Convergence of MSPCA: Since (10) gives the same solution
space as (7) and (11) indicates that Uk is the optimal sparse
approximation to Bk , MSPCA is convergent fast. Due to the existence
of the L1 norm penalty term in MSPCA, it is difficult to strictly
prove the convergence of MSPCA algorithm. However, experimen-
tal results shown in Fig. 1 indicate that MSPCA converges very
fast.

3) Termination Criterion of MSPCA: MSPCA is the sparse ver-
sion of MPCA. Thus, the scatter characterized by the multilin-
ear sparse principal vectors is a good convergence criterion of
MSPCA, which will be shown in the experimental section (i.e.,
Section IV). Let ST be the total sample scatter value, Sk

T (t)
and Sk

T (t + 1) be the total scatter value characterized by the
projection matrices in t- and t + 1-th iterations, respectively. If∣
∣
∣Sk

T (t + 1) − Sk
T (t)

∣
∣
∣ /ST < ε, where ε is a small constant such

as ε = 0.001, then MSPCA algorithm can be regarded as con-
vergent and the iteration procedure is terminated. Experimental
results presented in Section IV show that the proposed MSPCA
converges very fast for tensor data. Fig.1 (e) and (f) shows this
property.

IV. EXPERIMENT

In this section, a set of experiments are presented to evaluate
the proposed MSPCA algorithm for image recognition tasks when
the order of the data n is equal to 2. The Yale face database
(http://www.cvc.yale.edu/projects/ yalefaces/yalefaces.html) was used
to explore the properties of MSPCA, including the convergence,
robustness on the variations in expression and illumination. The
Face Recognition Technology (FERET) face database [29] was
used to evaluate the performance of these methods when face
poses and lighting conditions varied. The COIL-20 image database
(http://www.cs.columbia.edu/CAVE/software/softlib/coil-20.php) was
used to evaluate the robust performance of these methods when
the objective’s images varied in rotations. Finally, the perfor-
mance of higher order case (n = 3) of MSPCA was test
on Weizmann action database [30]. The details about the data-
bases used in this brief are described in the Supplementary
Appendix. The nearest neighborhood classifier with Euclidean
distance was used in all the experiments. The related Matlab
codes of this brief can be available from Yong Xu’s homepage
(http://www.yongxu.org/lunwen.html).

A. Exploration for the Properties of MSPCA

First, we explore some properties of MSPCA, including the
convergence property, the variations of recognition rate versus the
number of iterations, and the relationship between the sparsity (i.e.,
the number of nonzero loadings), the number of the projections and
the recognition rates. Fig. 1 shows these properties of MSPCA on the
Yale face database by randomly selecting four images per individual
for training and the remaining for test.

From Fig. 1(a), it can be found that MSPCA can achieve its best
performance using only very small number of nonzero elements
(usually within 2 ∼ 8 nonzero elements) on its projection. Fig.
1(b) shows that MSPCA can use less than 10 projection vectors
in each Uk (k = 1, 2) to achieve its top recognition rate, which
indicates the dimensionality reduction ability in face recognition.
Fig. 1(c) shows the recognition rate versus the variation of the key
parameter alpha in MSPCA, which indicates that if the L2 norm
penalty parameter is set to be 0 (i.e., without L2 norm penalty term),
the recognition rate is relatively low. This indicates that combining
the L1 and L2 norms penalty in MSPCA can enhance the perfor-
mance. As it is shown in [24] and [26], LASSO (only using the
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Fig. 1. Some properties of MSPCA. (a) Recognition rate versus the variations of dimension and the number of cardinality. (b) Recognition rate versus
the variation of dimension. (c) Recognition rate versus the variation of parameter alpha. (d) Variation of recognition rate versus the number of iteration.
(e) Convergence of MSPCA on Yale face database. (f) Convergence on COIL20 image database.

L1 norm in regression) has some uncertainty in feature selection
when there are several factors to be selected (LASSO randomly
selects one variable in this case), leading to a certain degree of uncer-
tainty in the projections. Thus, the performance will be degraded.
However, elastic net overcomes this drawback in LASSO and leads
to obtain more informative principal vectors. Fig. 1(d) shows the
recognition rate versus the variation of the number of iteration, which

indicates that the recognition rate is not affected when the algorithm
achieves three iterations. Fig. 1(e) and (f) shows the ratio value (i.e.,∣
∣Sk

T (t + 1) − Sk
T (t)

∣
∣/ST ) of the variations of the scatter in different

number of iterations. Usually, MSPCA will converge within several
iterations, which is similar to MPCA. Similar properties can also be
found in the other databases, but we will not present them for saving
space.
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TABLE I
PERFORMANCE (AVERAGE RECOGNITION RATE, DIMENSION, AND STANDARD DEVIATION) OF THE COMPARED

METHODS ON THE YALE FACE DATABASE

TABLE II
PERFORMANCE (AVERAGE RECOGNITION RATE, DIMENSION, AND STANDARD DEVIATION) OF THE COMPARED

METHODS ON THE FERET FACE DATABASE

B. Experimental Settings

PCA, SPCA, 2-DPCA, MPCA, and MSPCA are used for feature
extraction to compare their performance. PCA and SPCA are operated
on the high-dimensional vectors of the images, 2-DPCA, MPCA,
and MSPCA are directly operated on the image matrices. For face
feature extraction, MPCA and MSPCA were used as the second-order
(matrix-based) forms, and the third-order of MSPCA will be explored
in action recognition.

In each experiment presented in the following sections, the
databases are divided into training, validation, and test sets. In
each experiment, four and five (five and six on Weizmann action
database) samples of each individual/class are randomly selected
as the training set, and one half of the remaining is randomly
selected as validation set and the other half as test set. For each
run, the optimal parameters determined by the validation set (i.e.,
the parameters corresponding to the best recognition rate on the
validation set) were used to learn the projections for feature extraction
and classification. The experiments were repeated 10 times and the
average recognition rates, the standard deviations and the optimal
dimensionalities one the test set are reported. For simplicity, in
the experiments, we set α1 = α2 = α3 = ᾱ and the opti-
mal coefficients of L2 norm penalty term ᾱ was selected from
0.01, 0.1, …, 1000. The coefficients of L1 norm term (i.e., β or
βk) are automatically determined by the elastic net algorithm since
the elastic net algorithm can compute the optimal solution path for
any given ᾱ (or αk) (thus, it is not necessary to manually set the
parameter βk). The cardinality of each sparse projection was selected
from 1 to mi using the validation set. The optimal dimensions of
the subspace for 2-DPCA, MPCA, and MSPCA were selected from
1 ∼ mk . The optimal dimensions of the subspaces for PCA and
SPCA were selected from 1 to N − 1.

Since these methods mentioned above are all unsupervised, in the
experiments, we also report the performance using classical linear
discriminant analysis (LDA) for further supervised feature extraction
(this two stage strategy is denoted as *+LDA and * denotes the above
principal component learning methods). In this case, the samples are
projected to the C − 1 dimensions subspace, where C denotes the
number of classes.

C. Performance of MSPCA

In evaluation of the performance of the proposed algorithm in
feature extraction and recognition, the average recognition rates,
standard deviations and the optimal dimensionalities achieving the
top accuracies are reported in Tables I–IV. Note that 2-DPCA cannot
be used in action recognition, we only report the experimental results
of the remaining methods in Table IV. PCA and SPCA are operated
on the very high-dimensional vectors (32 × 24 × 10 = 7680), which
are obtained by concatenating column by column of the tensor data.
MPCA and MSPCA are directly operated on the 3rd tensors.

To test the computation times of PCA, SPCA, 2-DPCA, MPCA,
and MSPCA, all the experiments are run on a personal computer
[Intel (R) Core i7, CPU: 2.67 GHz, RAM: 4 GB] using MATLAB.
We take COIL-20 database as an example (using four images per
individual in the training stage) to compare the efficiency of these
methods. The computational times (in seconds) of PCA, 2-DPCA,
SPCA, MPCA, and MSPCA are 2.96, 0.12, 63.45, 0.23, and 0.35 s,
respectively. It can be found that when SPCA is extended to MSPCA,
the efficiency is greatly improved in learning the sparse principal
component vectors.

D. Observations and Discussions

Though there are variations in illumination and facial expression,
from the recognition rates, it can be found that MSPCA outperforms
the other principal component analysis algorithms. SPCA usually per-
forms better than PCA, and MSPCA also performs better than MPCA.
This shows that MSPCA enhances its robustness by introducing the
L1 and L2 norms penalty regression to select the most important
factors/variables for feature extraction. Another reason why MSPCA
and MPCA perform better than SPCA and PCA, respectively, is that
the structure information embedded in the higher order tensors does
enhance the feature extraction abilities of one method. Thus, the
higher order tensor extension of a feature extraction method is a
tractable way to enhance the performance for feature extraction.

For the two stage methods for feature extraction and recognition,
LDA usually significantly enhance the performance on face recogni-
tion. However, when there are large rotations in the objective images,
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TABLE III
PERFORMANCE (AVERAGE RECOGNITION RATE, DIMENSION, AND STANDARD DEVIATION) OF THE COMPARED

METHODS ON THE COIL-20 FACE DATABASE

TABLE IV
PERFORMANCE (AVERAGE RECOGNITION RATE, DIMENSION, AND STANDARD DEVIATION) OF THE COMPARED

METHODS ON THE WEIZMANN ACTION DATABASE

LDA can hardly enhance the accuracy due to the large within-class
scatter value.

When MPCA performs less effectively for some applications such
as action recognition, MSPCA still achieves the best performance
among the compared methods. This shows that MSPCA is more
stable and has stronger generalization ability and robustness in
feature extraction than MPCA and other principal component learning
methods.

V. CONCLUSION

This brief extends the SPCA or MPCA to multilinear sparse case
named MSPCA. We first convert the tensor-based MPCA criterion
into the multilinear ridge regression, which is then relaxed for the
multilinear sparse principal component learning by imposing the L1
norm penalty. The optimal sparse vectors of MSPCA can be effi-
ciently computed by iterative procedures using the sparse regression
method. Thus, this brief addresses the problem of multilinear sparse
principal component learning with the L1 and L2 norms regres-
sion for arbitrary high-order tensors. Computational and convergent
analyses were presented to show the properties of the MSPCA. The
experiments on second- and third-order tensor databases indicate that
MSPCA performs better than PCA, SPCA, 2-DPCA, and MPCA in
feature extraction.

APPENDIX A

PROOF OF THEOREM 1

Proof: From (10), we have
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For the fixed Bk , using Lagrange multiplier method, we know that
the above quantity is minimized at

Ûk =
(

Sk
T + α Ik

)−1
Sk

T Bk . (A2)

Substituting (A2) into (A1), we have
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Therefore, minimizing (A3) is equivalent to the following maxi-
mizing problem:

arg max
Bk
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Since Vk is the solution to (9), and therefore it is also the solution

to (7). Denoting the SVD of Sk
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Form (A5), It is straightforward to find that Bk = Vk =
[v1

k , v2
k , . . . , vdk

k ] is the solution of (A4). This shows (7) and (10)
have the same solution. Therefore, from (A2), we obtain

Ûk =(Sk
T +α Ik )−1Sk

T Bk =Vk

�
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�
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where
�
Dk(1 : dk , 1 : dk) denotes the submatrix of

�
Dk . Thus,

u j
k ∝ v j

k (1 ≤ j ≤ dk).

APPENDIX B

DESCRIPTION OF THE DATA SETS

The Yale face database (http://www.cvc.yale.edu/projects/
yalefaces/yalefaces.html) contains 165 images of 15 individuals
(each person providing 11 different images) with various facial
expressions and lighting conditions. In our experiments, each image
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Fig. A1. Image samples used in the experiments. (a) Yale face database. (b) FERET face database. (c) COIL-20 object image database.

was manually cropped and resized to 50 × 40 pixels. Fig. A1(a)
shows the sample images of one person in the Yale database.

The FERET face database is a result of the FERET program,
which was sponsored by the U. S. Department of Defense through
the DARPA Program [29]. It has become a standard database for
testing and evaluating state-of-the-art face recognition algorithms.
The proposed method was tested on a subset of the FERET data-
base. This subset includes 1400 images of 200 individuals (each
individual has seven images) and involves variations in facial expres-
sion, illumination, and pose. In the experiment, the facial portion
of each original image was automatically cropped based on the
location of the eyes, and the cropped images was resized to 40 ×
40 pixels. The images were preprocessing using histogram equal-
ization at first and then the pixel values were normalized within
the area of [0, 1]. The sample images of one person are shown
in Fig. A1(b).

The COIL-20 database (http://www.cs.columbia.edu/
CAVE/software/softlib/coil-20.php) consists of 20 × 72 = 1440
images of 20 objects where the images of each object were taken at
pose intervals of 5° (i.e., 72 poses per object). The original images
were normalized to 128 × 128 pixels. Each image was converted to
a gray scale image of 32 × 32 pixel for computational efficiency
in the experiments. Some sample images of four objects are shown
in Fig. A1(c).

The experiment was performed on the Weizmann database [30],
which was a commonly used database for human action recognition.
The 90 videos coming from 10 categories of actions included bending
(bend), jacking (jack), jumping (jump), jumping in places (pjump),
running (run), galloping-side ways (side), skipping (skip), walking
(walk), single-hand waving (wave1), and both-hands waving (wave2),
which were performed by nine subjects. The centered key silhouettes
of each action are shown in Fig. A2(a).

To represent the spatiotemporal feature of the samples, 10 suc-
cessive frames of each action were used to extract the temporal
feature. Fig. A2(b) shows a tensor sample of the bending action. Each
centered frame was normalized to the size of 32 × 24 pixels. Thus,
the tensor sample was represented in the size of 32 × 24 × 10 pixels.
It should be note that there is no overlapped frames in any two
tensors and the starting frames of the tensors are not normalized to
the beginning frames of each action. Thus, the recognition tasks are
difficult and close to the real-world applications. Therefore, if one

Fig. A2. (a) Sample images of each action. (b) Example of the bending
action in spatiotemporal domain from Weizmann database.

wants to obtain high recognition accuracy, the methods used for
feature extraction should be robust to starting frames and actions’
variations.
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